1,616 research outputs found

    Exercise intensity-dependent effects of arm and leg-cycling on cognitive performance

    Get PDF
    Physiological responses to arm and leg-cycling are different, which may influence psychological and biological mechanisms that influence post-exercise cognitive performance. The aim of this study was to determine the effects of maximal and submaximal (absolute and relative intensity matched) arm and leg-cycling on executive function. Thirteen males (age, 24.7 ± 5.0 years) initially undertook two incremental exercise tests to volitional exhaustion for arm-cycling (82 ± 18 W) and leg-cycling (243 ± 52 W) for the determination of maximal power output. Participants subsequently performed three 20-min constant load exercise trials: (1) arm-cycling at 50% of the ergometer-specific maximal power output (41 ± 9 W), (2) leg-cycling at 50% of the ergometer-specific maximal power output (122 ± 26 W), and (3) leg-cycling at the same absolute power output as the submaximal arm-cycling trial (41 ± 9 W). An executive function task was completed before, immediately after and 15-min after each exercise test. Exhaustive leg-cycling increased reaction time (p 0.05). Improvements in reaction time following arm-cycling were maintained for at least 15-min post exercise (p = 0.008, d = -0.73). Arm and leg-cycling performed at the same relative intensity elicit comparable improvements in cognitive performance. These findings suggest that individuals restricted to arm exercise possess a similar capacity to elicit an exercise-induced cognitive performance benefit

    Analysis of Photogrammetry Data from ISIM Mockup, June 1, 2007

    Get PDF
    During ground testing of the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST), the ISIM Optics group plans to use a Photogrammetry Measurement System for cryogenic calibration of specific target points on the ISIM composite structure and Science Instrument optical benches and other GSE equipment. This testing will occur in the Space Environmental Systems (SES) chamber at Goddard Space Flight Center. Close range photogrammetry is a 3 dimensional metrology system using triangulation to locate custom targets in 3 coordinates via a collection of digital photographs taken from various locations and orientations. These photos are connected using coded targets, special targets that are recognized by the software and can thus correlate the images to provide a 3 dimensional map of the targets, and scaled via well calibrated scale bars. Photogrammetry solves for the camera location and coordinates of the targets simultaneously through the bundling procedure contained in the V-STARS software

    Realtime Dynamic Binary Instrumentation

    Get PDF
    poster abstractAbstract: We present a novel technique and framework for decreasing instrumentation overhead in software systems that utilize dynamic binary instrumentation. First, we introduce a lightweight networking framework combined with an easily extensible BSON implementation as a heavy analysis routine replacement. Secondly, we bind instrumentation and analysis threads to non-overlapping cpu cores---allowing analysis threads to execute faster. Lastly, we utilize a lock-free buffering system to bridge the gap between instrumentation and analysis threads, and minimize the overhead to the instrumentation threads. Using this combination, we managed to write a dynamic binary instrumentation tool (DBI) in Pin using Pin++ that is 1100% faster than its counterpart DBI tool with no buffering, and less than 500% slower than a similar tool with no analysis routine

    Analysis of Photogrammetry Data from ISIM Mockup

    Get PDF
    During ground testing of the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST), the ISIM Optics group plans to use a Photogrammetry Measurement System for cryogenic calibration of specific target points on the ISIM composite structure and Science Instrument optical benches and other GSE equipment. This testing will occur in the Space Environmental Systems (SES) chamber at Goddard Space Flight Center. Close range photogrammetry is a 3 dimensional metrology system using triangulation to locate custom targets in 3 coordinates via a collection of digital photographs taken from various locations and orientations. These photos are connected using coded targets, special targets that are recognized by the software and can thus correlate the images to provide a 3 dimensional map of the targets, and scaled via well calibrated scale bars. Photogrammetry solves for the camera location and coordinates of the targets simultaneously through the bundling procedure contained in the V-STARS software, proprietary software owned by Geodetic Systems Inc. The primary objectives of the metrology performed on the ISIM mock-up were (1) to quantify the accuracy of the INCA3 photogrammetry camera on a representative full scale version of the ISIM structure at ambient temperature by comparing the measurements obtained with this camera to measurements using the Leica laser tracker system and (2), empirically determine the smallest increment of target position movement that can be resolved by the PG camera in the test setup, i.e., precision, or resolution. In addition, the geometrical details of the test setup defined during the mockup testing, such as target locations and camera positions, will contribute to the final design of the photogrammetry system to be used on the ISIM Flight Structure

    You wrote it; you own it!

    Get PDF
    Authors of papers published in Rockefeller University Press journals (The Journal of Cell Biology, The Journal of Experimental Medicine, or The Journal of General Physiology) now retain copyright to their published work. This permits authors to reuse their own work in any way, as long as they attribute it to the original publication. Third parties may use our published materials under a Creative Commons license, six months after publication

    A highly scalable Met Office NERC Cloud model

    Get PDF
    Large Eddy Simulation is a critical modelling tool for scien- tists investigating atmospheric flows, turbulence and cloud microphysics. Within the UK, the principal LES model used by the atmospheric research community is the Met Office Large Eddy Model (LEM). The LEM was originally devel- oped in the late 1980s using computational techniques and assumptions of the time, which means that the it does not scale beyond 512 cores. In this paper we present the Met Office NERC Cloud model, MONC, which is a re-write of the existing LEM. We discuss the software engineering and architectural decisions made in order to develop a flexible, extensible model which the community can easily customise for their own needs. The scalability of MONC is evaluated, along with numerous additional customisations made to fur- ther improve performance at large core counts. The result of this work is a model which delivers to the community signifi- cant new scientific modelling capability that takes advantage of the current and future generation HPC machine

    Hypervelocity impact study: The effect of impact angle on crater morphology

    Get PDF
    The Space Power Institute (SPI) of Auburn University has conducted preliminary tests on the effects of impact angle on crater morphology for hypervelocity impacts. Copper target plates were set at angles of 30 deg and 60 deg from the particle flight path. For the 30 deg impact, the craters looked almost identical to earlier normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution. Further research on angle effects is planned, because the particle velocities for these shots were relatively slow (7 km/s or less)

    Maximal Fat Oxidation during Incremental Upper and Lower Body Exercise in Healthy Young Males

    Get PDF
    The aim of this study is to determine the magnitude of maximal fat oxidation (MFO) during incremental upper and lower body exercise. Thirteen non-specifically trained male participants (19.3 ± 0.5 y, 78.1 ± 9.1 kg body mass) volunteered for this repeated-measures study, which had received university ethics committee approval. Participants undertook two incremental arm crank (ACE) and cycle ergometry (CE) exercise tests to volitional exhaustion. The first test for each mode served as habituation. The second test was an individualised protocol, beginning at 40% of the peak power output (POpeak) achieved in the first test, with increases of 10% POpeak until volitional exhaustion. Expired gases were recorded at the end of each incremental stage, from which fat and carbohydrate oxidation rates were calculated. MFO was taken as the greatest fat oxidation value during incremental exercise and expressed relative to peak oxygen uptake (%V˙O2peak). MFO was lower during ACE (0.44 ± 0.24 g·min−1) than CE (0.77 ± 0.31 g·min−1; respectively, p < 0.01) and occurred at a lower exercise intensity (53 ± 21 vs. 67 ± 18%V˙O2peak; respectively, p < 0.01). Inter-participant variability for MFO was greatest during ACE. These results suggest that weight loss programs involving the upper body should occur at lower exercise intensities than for the lower body
    corecore